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A B S T R A C T

Hematophagous flies pose a significant threat to livestock health and productivity. Traditional pest control 
methods, which heavily rely on chemical insecticides, present risks such as resistance development and envi
ronmental harm. This study presents a novel smart trap for real-time monitoring and identification of Tabanidae, 
Hippoboscidae (i.e., Hippobosca equina L.), and Muscidae (i.e., Stomoxys calcitrans (L.)) on cattle. The system 
includes a microcontroller for managing various sensors (light, temperature, humidity, and gas) and power 
management. The control unit is complemented by a microprocessor responsible for managing and processing 
images from a camera. The system integrates high-resolution imaging, a convolutional neural network (CNN) for 
species recognition, and environmental sensors to monitor factors affecting insect behavior. On the test set, the 
CNN achieved an overall precision of 0.96 and recall of 0.98 in detecting instances, with an overall classification 
accuracy of 0.96. Equipped, also, by lithium-ion battery and by communication module, the trap can operate 
autonomously and transmit data, becoming suitable for large-scale deployments. Overall, the tool developed here 
offers a practical and cheap solution for sustainable and accurate pest monitoring of hematophagous flies 
attacking cattle in pasture and feedlot.

Introduction

Hematophagous insects represent a threat to livestock health and 
welfare in agricultural systems [1]. Among them, several Diptera species 
are both pests and vectors of various pathogens of veterinary importance 
[2–4]. The resulting economic implications are important, encompass
ing direct losses due to decreased animal productivity, and indirect costs 
associated with veterinary care and pest management interventions [5]. 
Traditionally, the management of these pests predominantly relied on 
chemical insecticides, which, although effective in the short term, pre
sent substantial risks such as the development of insecticide resistance, 
and non-target effects on human health and the environment [6,7]. 
Thus, developing sustainable pest management strategies that incorpo
rate early detection and accurate monitoring of hematophagous flies is 
essential.

Precision pest management is increasingly being recognized as a 
promising approach to address these challenges [8–10]. Central to this 

approach is the ability to monitor pest populations with high accuracy 
and in real time, enabling targeted interventions that minimize the use 
of chemical products [11]. Recent advances in artificial intelligence (AI) 
and automation have the potential to revolutionize pest monitoring 
systems by providing the technological foundation for precision agri
culture [12,13]. AI-driven technologies, particularly those employing 
machine learning algorithms, can facilitate the automatic detection, 
identification, and quantification of pest species, thereby enhancing the 
efficiency and effectiveness of pest management practices [14–18].

Significant progress has been made toward the development of 
automated systems (e.g., smart pest traps) that integrate advanced 
sensing, imaging, and data processing capabilities [19,20]. These sys
tems are designed to continuously monitor insect populations, providing 
valuable data that can inform pest control decisions. For instance, 
several studies have reported the successful deployment of smart traps 
that exploit high-resolution cameras coupled with machine learning 
algorithms to identify and classify insect species based on morphological 
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characteristics [21–24]. Such systems are capable of working autono
mously in various environmental conditions, offering real-time data 
collection and analysis [25]. Despite these advancements, existing smart 
traps often face limitations related to scalability, environmental adapt
ability, and the accuracy of species identification in diverse field con
ditions. Furthermore, the integration of environmental sensors to 
monitor factors such as temperature, humidity, and light, which influ
ence insect behavior and population dynamics, remains underexplored 
in the context of smart traps [7].

Considering these challenges, herein we have developed an innova
tive smart trap prototype aimed at the identification and monitoring of 
various hematophagous flies attacking cattle in pasture and feedlot, 
specifically fly species belonging to the family Tabanidae, as well as 
Hippobosca equina L. (Diptera: Hippoboscidae) and the stable fly Sto
moxys calcitrans (L.) (Diptera: Muscidae). These species cause direct 
harm on animals, which is typically intensity-dependent, but more 
significantly, they can contribute to indirect damage by facilitating the 
spread of pathogens like filarial nematodes and various viruses [26,27].

This study details the design, development, and initial field testing of 
our smart trap, highlighting its potential to improve the sustainable 
management of haematophagous fly populations in livestock stables. By 
combining high-resolution imaging, advanced machine learning algo
rithms, and comprehensive environmental monitoring, this smart trap 
aims at offering a robust and scalable solution for monitoring flies 
attacking cattle in pasture and feedlot. Our research contributes to the 
growing body of literature on precision agriculture and underscores the 
importance of integrating AI and automation in the development of 
sustainable pest and vector management technologies. Fig. 1 presents 
the workflow of the proposed approach.

Materials and methods

Species collection and identification

Three families of flies attacking cattle on pasture or confined rearing 
area, were studied i.e. Tabanidae, Hippoboscidae (H. equina), and 
Muscidae (S. calcitrans). Part of the hematophagous flies were sampled 
at the experimental farm of Centro di Ricerche Agro-Ambientali “Enrico 
Avanzi” (CiRAA), University of Pisa (Italy); the farm is composed by 500 
hectares of arable land, and two stables, where nearly 100 dairy cattle 
and 50 beef cattle are reared.

Stomoxys calcitrans specimens were sampled indoor during milking 
sessions in the dairy cattle barn using an entomological net and an 
aspirator. Tabanids were gathered using the Tabanus Trap (VOSS. 
farming) positioned in three hotspots at CiRAA (spot 1: 43.681218, 
10.340477; spot 2: 43.682560, 10.339620; spot 3: 43.662785, 
10.29131). This type of trap uses solar heat to deceive female tabanids 
into locating the trap, which can be detected by the warmth emitted by 
an inflated black ball suspended underneath a plastic hood. Upon 
landing on the black sphere, the females ascend into the collecting 
chamber from which they cannot free themselves. Species identification 
was conducted based on the descriptions and keys provided by Chvála 
et al. [28], Walker [29], and [30]. Hippobosca equina individuals and 
some additional specimens of S. calcitrans and Tabanidae from the 
entomological collection at the Entomology Section of the Department 
of Agriculture, Food and Environment, University of Pisa, were utilized 
for the training.

Smart trap design

The smart trap was designed with a robust plastic enclosure that 
houses all the electronic components, including a camera for image 
acquisition. This enclosure is mounted on a white Plexiglas board, which 

Fig. 1. Workflow of the proposed approach.
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serves as the base, while a second Plexiglas board, positioned parallel to 
the first, forms the visual background of the trap. These two boards are 
connected by four threaded rods, allowing for adjustable distance 
regulation between the camera and the background (Fig. 2). Chromo
tropic or olfactory cues are incorporated within the trap to attract target 
insect species.

Hardware components

The smart trap hardware includes a Raspberry Pi 4 microprocessor 
board, an ESP32-based microcontroller board (LilyGO-T-7670), a 

variety of sensors, and a high-resolution camera (Raspberry Pi Camera 
Module v.3). To facilitate remote data transmission and location 
tracking, a GSM/GPS module is integrated into the system (Fig. 3).

To monitor environmental conditions, a digital sensor known as 
HTU21D was employed for its reliability in measuring temperature and 
humidity, which are critical factors influencing insect biology and 
behavior. Given the operational environment within livestock stables, 
where high concentrations of cattle are present, the MQ-9 gas sensor was 
selected for its capability to detect gasses such as carbon monoxide, 
methane, and LPG, which are essential for monitoring air quality and 
assessing environmental safety.

Fig. 2. Schematic representation of the smart trap structure, along with the assembled version, including its components description.
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In addition to these sensors, the trap includes a GL5528 photoresistor 
to measure ambient light levels. The varying conductance of this sensor, 
depending on luminance, provides valuable data for correlating insect 
activity with light conditions. The primary tool for fly identification is 
the high-resolution Raspberry Pi Camera Module v.3, which captures 
images processed in real-time by a convolutional neural network (CNN) 
trained to classify various fly species.

The smart trap’s functionality is governed by two main processing 
units: the Raspberry Pi 4 microprocessor and the ESP32-based micro
controller. The microcontroller is tasked with low-level operations, such 
as analog-to-digital conversions, sensor data acquisition, and power 
management, while the microprocessor handles more complex tasks, 
including running the neural network for image processing and man
aging data storage and transmission.

The smart trap can perform remote monitoring and data trans
mission, made possible by the integrated GSM/GPS module (A7670). 
This module, supporting multiple communication protocols such as LTE- 
TDD, LTE-FDD, GSM, and GPRS, enables the smart trap to connect to the 
internet and send collected data, including insect counts and environ
mental parameters, to a remote server via email. In the event of power 
loss, the system seamlessly switches to a backup battery managed by the 
microcontroller. To conserve power, the microcontroller disables the 
microprocessor and reduces communication frequency, sending alarm 
notifications via SMS or email as needed. The microcontroller then en
ters a low-power sleep mode, periodically waking to check the system’s 
status.

During normal operation, the smart trap autonomously collects and 
processes data continuously. Sensor readings are acquired every second 
and temporarily stored in arrays managed by the microcontroller. The 
microprocessor regularly requests data from the microcontroller, pro
cesses images from the camera, and uses the neural network to compute 
the desired outputs. These results, including the number and type of 
insects detected, are logged and transmitted daily to a remote server via 
email. A log file is attached in each email. When powered by a battery, 
the smart trap operates by activating the communication module only 
once a day to conserve energy. When powered by the electrical grid, 
however, the communication system can remain active continuously, 
allowing remote requests and commands to be sent via specific SMS 
messages or email.

The GSM/GPS module also provides geolocation capabilities with an 
accuracy of approximately three meters. While this feature may not be 
essential for traps that remain stationary within a single stall, it proves 
valuable for mobile deployments, enabling precise data correlation with 
specific locations during post-processing.

Automatic detection algorithm and dataset

For this study, the Ultralytics YOLOv8s model was chosen, building 
upon the YOLO (You Only Look Once) family of CNNs [31]. YOLO has 
proven to be highly effective in real-time object detection, notable for its 
ability to execute the task in a single pass through the network, making it 
computationally efficient. These networks have been successfully 
applied to a wide range of detection tasks, ranging from environmental 
applications [32], to medical [33] and industrial contexts [34]. YOLOv8 
represents an advancement within the YOLO family, incorporating deep 
learning improvements for enhanced speed, accuracy, and ease of 
deployment. We opted to use the small version of YOLOv8 due to its 
lighter architecture, which offers faster processing times and reduced 
computational requirements while maintaining strong performance. 
This study gathered a total of 479 images, which were divided into three 
sets: 420 images for training, 40 images for validation, and 19 images for 
testing. The images were manually labeled using the online software 
Roboflow. The dataset includes three distinct object categories, Hippo
boscidae, Stomoxys, and Tabanidae flies.

The number of instances per image ranges from 1 to 5, featuring 
various combinations of these categories within a single image. To 
reduce bias toward any dominant class, the instances were balanced 
across categories. The dataset was collected in a controlled environment 
throughout the entire day, specifically between 9:00 and 18:00, 
capturing images under varying lighting conditions to enhance the 
model’s ability to generalize. To better replicate a natural setting, po
tential classifier disturbances commonly found in the wild, such as 
leaves, stones, and other environmental elements, were intentionally 
included in the background. Additionally, to further aid the classifier in 
generalization, images were captured against diverse backgrounds made 
of different materials and colors, including a gray polystyrene surface 
and a black cloth, in addition to a neutral backdrop. This approach en
sures robustness to real-world variations and improves the model’s 
ability to accurately distinguish the target species. To enhance model 
generalization, data augmentation techniques were applied. All images 
were resized to 640 × 640 pixels. The CNN model was fine-tuned using a 
pre-trained version of YOLOv8s, originally trained on the COCO dataset.

Results

The performance of the CNN model in object detection was evalu
ated, Fig. 4 presents key metrics recorded during both training and 
validation phases. During training, a common trend observed was the 
consistent decrease in loss metrics, which signaled the model’s adaptive 

Fig. 3. Architecture of the hardware inside the smart trap including the microprocessor, microcontroller, camera, sensors, and communication module.
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learning and its capability to iteratively fine-tune parameters, thereby 
enhancing its accuracy in identifying complex patterns within the 
dataset. The model’s precision, recall, and mean Average Precision 
(mAP) improved across epochs, eventually stabilizing after the epoch 
300. Training was stopped early since no further improvements were 
detected in the final 150 epochs. Overall, the CNN achieved 0.99 pre
cision, 0.98 recall, and a mean average precision at a 0.5 threshold 
(mAP@0.5) of 0.99 on the validation set. The network exhibited an 
overall precision of 1.0 at a confidence threshold of 0.9, and an overall 
recall of 1.0 at a confidence threshold of 0.0. The overall F1-score 
reached its peak of 0.99 at a confidence threshold of 0.737. The over
all classification accuracy was 0.94.

On the test set, the best model configuration achieved, overall, 0.96 
precision, 0.98 recall, and 0.995 mAP@0.5. The precision was 1.0 at a 

confidence threshold of 0.912, and the recall 1.0 at a confidence 
threshold of 0.0. Fig. 5 shows the F1-confidence curves generated from 
the test results, including individual curves for each class and an overall 
curve representing all classes. These curves, displaying the F1-score at 
various confidence thresholds, demonstrate that the model has achieved 
an optimal balance between precision (accuracy of positive predictions) 
and recall (ability to retrieve all positive instances). This balance high
lights the overall effectiveness of the model in object detection and its 
ability to distinguish positive from negative instances. The overall F1- 
score reached a value of 0.97 at a confidence threshold of 0.122. 
These test results were consistent with those from the validation set, 
demonstrating that the network has effectively generalized and had not 
suffered from overfitting during training. Fig. 6 displays sample de
tections from the test set, demonstrating the model’s accuracy in 

Fig. 4. Key metrics illustrating model’s performance in object detection during both training and validation phases.

Fig. 5. F1-confidence curves.
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identifying key features across various instances in unseen data. These 
examples underscore the detection algorithm’s robustness and its ability 
to generalize effectively across new samples.

Fig. 7 illustrates the normalized confusion matrix. Overall, the 
confusion matrix suggests that the model performed well in classifying 
the different classes in the test set, with minor errors. The CNN achieved 
an overall classification accuracy of 0.96.

Discussion

This study introduces a new device for monitoring the population of 
tabanid, hippoboscid, and muscid flies attacking cattle. The present low- 
cost tool can allow the assessment of several key parameters, including 
the measurement of environmental factors that may influence flies’ 
population dynamics. The system is designed as an open platform, 
enabling the integration of additional sensors to enhance research ca
pabilities, as well as to adapt the trap for studying other insect species. 
Connection to standard communication networks facilitates program
mable message transmission, real-time data transfer, and remote control 
and avoids the presence of an operator, who might affect the environ
ment during measurements. Of note, the developed AI system not only 
delivers effective insect recognition, but also supports the training of 
new neural networks, enabling identification of different insect species 
and making the smart trap adaptable to diverse applications. Laboratory 
tests with sample species have confirmed the tool’s effectiveness. Future 
research will aim at achieving real-time insect identification in the field, 
with targeted mechanical or chemical capture actions limited to desig
nated areas of interest. Significant progress has been made in developing 
automated systems like smart pest traps, which integrate advanced 
sensing, imaging, and data-processing technologies [19,20]. These 
advanced systems enable continuous surveillance of insect populations, 
providing critical data to support and refine pest control strategies. A 
growing number of studies highlight successful implementations of 
smart traps equipped with high-resolution cameras and machine 
learning algorithms that can identify and classify insect species based on 
distinctive morphological features. Preti et al. [35] developed a smart 
trap prototype for remote monitoring of codling moths in pome fruit 
crops, aiming to reduce the labor and delays associated with traditional 
trap inspections. Brunelli et al. [36] presented an ultra-low power smart 
camera for detecting and recognizing codling moths in apple orchards, 
aiming to enable early pest detection and long-range wireless alarms. 
The smart trap developed by Wang & Bu [24] was designed for 

monitoring codling moths in apple orchards, uses advanced sensors and 
machine learning to provide continuous, real-time pest detection. Our 
prototype represents a significant advancement in the field of pest 
management by integrating several cutting-edge technologies into a 
single, cohesive system. The smart trap is equipped with a 
high-resolution camera capable of capturing detailed images of insects 
as they enter the trap. These images are processed in real-time using a 
CNN, which has been trained to identify various species, particularly the 
above-mentioned flies those within the Diptera order, which are of 
primary veterinary importance.

The hardware architecture of the smart trap is centered around a 
microprocessor, which serves as the processing unit for image data and 
controls the operation of integrated environmental sensors. These sen
sors include temperature, humidity, and light sensors, which monitor 
the environmental conditions within the stable, providing contextual 
data that may influence insect activity. The trap includes a methane 
sensor to detect harmful gas emissions, for monitoring air quality con
ditions [37–40].

The entire system is enclosed within a robust plastic housing that 
protects the electronic components from environmental factors while 
allowing for efficient image acquisition.

One of the key innovations of our smart trap is its ability to function 
autonomously with minimal maintenance. Power is supplied through a 
combination of a power supply and lithium-ion batteries, ensuring 
continuous operation even in remote or off-grid locations. The trap is 
also equipped with a communication module that facilitates real-time 
data transmission via Wi-Fi or cellular networks, enabling remote 
monitoring and data analysis. This feature is particularly valuable for 
large-scale deployments where constant human oversight is impractical.

In several studies [41–43], insect captures were manually verified 
from images accessed remotely via computer or smartphone, requiring a 
trained observer at the control station to accurately identify species. 
While this method eliminates the need for field visits, it is still 
time-consuming and depends heavily on human expertise. In contrast, 
our smart trap leverages deep learning techniques for autonomous, 
in-device data processing, avoiding the need for manual identification. 
Designed with minimal maintenance requirements, it provides 
ready-to-use, processed data and enables long-term deployment even in 
remote or off-grid locations, significantly reducing both labor and 
operational time.

According to Selby et al. [44], using wireless technology, such as 
Wi-Fi or cellular signals, for trap monitoring may reduce visit 

Fig. 6. Sample detections from the test set: two representative images from the test set demonstrating the model’s detection capabilities, highlighting its accuracy 
and consistency.
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requirements by facilitating real-time access to trap data, status, set
tings, and data processing from distant locations. This feature is 
particularly useful for large-scale deployments where frequent on-site 
inspections would be impractical and resource-intensive. In this direc
tion, Our smart trap integrates a communication module that allows for 
real-time data transmission through Wi-Fi or cellular networks, enabling 
remote monitoring and prompt data analysis. By providing real-time 
updates on pest activity, the system allows for more timely 
decision-making and targeted pest control interventions.

Earlier research on smart monitoring mostly focused on agriculture 
[15,41] and urban pests [45]. For instance, Eliopoulos et al. [45] created 
an IoT-compatible gadget for the automated identification and reporting 
of crawling insects in urban environments, effectively integrating with 
smart buildings. Ünlü et al. [42] developed a system to monitor the 
European grapevine moth, Lobesia botrana Denis & Schifermüller 
(Lepidoptera: Tortricidae), in vineyard environments. On the other 
hand, our advanced smart trap is designed for the surveillance of he
matophagous flies attacking beef and dairy cattle in diverse environ
ments addressing a vital need in animal health and management. This 
application is particularly important as these insects pose significant 
health risks to livestock, potentially transmitting diseases and affecting 
animal welfare [46,47]. By utilizing our system in this context, we aim 
to provide a targeted, automated solution for monitoring and managing 
these insects, offering a more efficient and scalable approach compared 
to traditional methods.

A further advantage is represented by the integration of advanced 
image processing and classification algorithms directly within the trap, 
eliminating much of the need for external data processing. This system 
can autonomously detect and classify insects on-site, delivering instant 
results and enabling faster responses to infestations. This on-site pro
cessing capability not only accelerates pest management decisions, but 
also reduces operational costs by limiting the need for manual inter
vention and off-site data analysis. The system is highly scalable, allow
ing for the integration of future network updates and the addition of new 
algorithms enhancing the trap’s ability to monitor the pest populations.

The system developed in this study combines energy autonomy, real- 
time communication, and efficient on-device data processing to offer a 
sustainable, cost-effective solution for large-scale pest monitoring. 
These innovations enhance the practicality and scalability of smart traps 

in agricultural settings, where continuous pest surveillance is essential 
but labor-intensive.

This work contributes to the expanding field of precision agriculture, 
highlighting the essential role of AI and automation in advancing sus
tainable pest management technologies. By incorporating these tech
nologies, we aim to improve the efficiency and effectiveness of pest 
control methods, supporting the development of more intelligent, 
resource-efficient agricultural practices that address the increasing 
challenges in pest and vector management, while minimizing environ
mental impact.
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